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Phase-field model for front propagation in a temperature gradient:
Selection and competition between the correlation and the thermal lengths
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A phase-field model is presented to study the propagation and the selection of a front in directional growth.
The phase transition can be first or second order and is described by a nonconserved order parameter. In
general, the thermal length, (inversely proportional to the temperature gradiégetmuch larger than the
correlation length ,, which gives the width of the front, and there is no direct competition between them
(e=1,4/1,<1). In this paper, we consider a situation where these two lengths can be of the same order of
magnitude £=1,/1, close to 1). This happens in liquid crystals at the nematic-cholesteric phase transition.
The problem of the front selection is solved theoretically by first performing an asymptotic analysis of the
governing equations in the limié— 0, and then by solving the equations numerically. The main result is that
the front is selected in a single wéyo continuum of solutionsas long ag # 0, whatever the velocity and the
order of the phase transition. Finally, we show that the order parameter profile and the front temperature can
change significantly whea approaches 1.
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[. INTRODUCTION first- and second-order phase transitions described by a non-
conserved order parametér There are two typical lengths
The phase-field formulation[1] replaces the free- in the problem: the thermal length inversely proportional
boundary problem associated with the sharp interface modeb the temperature gradient and proportional to a temperature
of an interface by a coupled pair of nonlinear reaction-shift characteristic of the phase transition, and the correlation
diffusion equations. The spatial and temporal variations ofengthl , that gives the width of the front, i.e., of th order
the order parameter phase field is governed by the tim&sarameter profile. In the following, we set=1,/1,. For
dependent Ginzburg-LanddTDGL) equation. The second ;g ;5| phase transitions<1, so thats can be considered as
equation(for temperaturkis based on a modification of the yho sma)l parameter of the theory. A very classical example
heat equation to allow a source term that accounts for latenft firqt order phase transition in liquid crystals is the
heat production at a moving interface. L nematic-isotropic phase transition. As examples of second-
The relevant phase-field theory of liquid crystaB3] order phase transitions, we can cite the nematic—smactic-
turns out to be just the dynamical generalization of the fa- P . ' . .
miliar Landau—de Gennes theory of liquid crystals interfacetr":ms't.'on(WhICh can alsq be first grder, dept_andmg on the
[4]. In this paper we develop a phase-field model to study thé&"aterial and the smect|@c—smect|c€5transmon. In all
directional solidification of a liquid crystal, in particular, a theS€ examples; is of the order of 10°. In some experi-
moving interphase interface as it is dragged along at a fixedn€nt,e can be much larger and close to 1. This is the case at
controllable velocity in a temperature gradient, which is alsothe cholesteric-nematic phase transiti@ which we de-
controllable. Even if we shall discuss the problem only fromscribe in detail in the following section. In addition, this
a theoretical point of view, we briefly describe the experi-phase transition can be first or second order, depending on
ment[5]. A (nearly two-dimensional sampléa thin sand- the anisotropy of the Frank elastic constants. For this reason,
wich of liquid crystal between two glass plates placed it constitutes an unique example of phase transition where
into a temperature gradient that points in the plane of thehe correlation length can be of the same order as the thermal
sample. The temperature gradient is set by putting the samplength associated to the temperature gradient. In the follow-
across the gap between two ovens. The temperatures of tireg, and to present the subject in a general form, the less
ovens are chosen so that there is a phase transition in beymmetric phase will be called as the ordered phase and the
tween, giving rise to a straight interface. The sample is setnore symmetric one as the disordered phase.
into motion at a velocityV; after a transient, the interface  This paper is organized as follows. In Sec. Il, we describe
freezes at-V in order to stay at the same temperature. Wethe basic model and give the governing equations. In Sec. lll,
ignore the release of latent heat at the interface and assumme study the case of a static interface in a temperature gra-
that the temperature field is imposed by the glass plates. dient when the transition is first or second order. An
All the theoretical results obtained in this paper apply toasymptotic analysis as a function of the small parameisr
given when the phase transition is of first order. The problem
is solved numerically in other cases. In Sec. IV, we discuss
* Author to whom correspondence should be addressed. Email adhe case of a moving interface. This section includes an
dress: patrick.oswald@ens-lyon.fr analysis of the “pushed-pulled” transition in free growt
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zero-temperature gradignas well as an asymptotic analysis the case of the nematic-isotropic phase transitia,

of front selection at smalt when the transition is of first =1 K, G=10 K/cm, | ,~10"® cm, so thate=10""° [5,7].
order. The equations are also solved numerically and th&he same order of magnitude is obtained for the smectic-
problem of the front selection for second-order phase trannematic interfacg8].

stion and first-order phase transition beyond the spinodal Much larger value ofs is expected for the cholesteric-
limit are discussed. In Sec. V, we summarize our results andematic front{6]. This front is observed when a cholesteric

present some brief conclusions. phase is sandwiched between two parallel glass plates treated
in homeotropic anchoring. This boundary condition is in-
Il. THE MODEL compatible with the helical structure of the cholesteric phase.

Because of this frustration, the helix unwinds and a homeo-
Within a mesoscopic approach such as ours, the free eriropic nematic phase is obtained. In usual cholesterics, the
ergy of a single-component system is represented by th#ansition (of the same type as the Frederiks transitie
functional first order. The order parameter is the maximum tilt argle
of the director in the sampled=0 in the nematic and
1 ) . #0 in the cholesteric. The control parameter is the r&tio
]::J §L|V¢| +1(g,T) |dr, (1) =d/P of the sample thickness over the equilibrium choles-
teric pitch. In a typical experiment, the two phases coexist at
whereL is an elastic constant(f t) the nonconserved or- Ce=1-1 while the nematic phase is unstable bel@d
der parameter, andl the temperature. The form of the free :h%r? i ir;r hlti esggr%all eptu?cslfn ggﬂ?étrl]oir; ggp cgﬁvgrt:ise?):t\(/)?d by
energy densityf(¢,T) depends on the order of the phase ging P
transition [e.g., for a first—o_rder phase transition inside the i ihe temperature. This happens near a smectic phase
region enclosed by the spinoddl,T) has a double-well \yhere the pitch diverges. In this case, it is possible to ob-
structure with respect tg in which the two local minima  serve the transition in a sample of a given thickness and to

the temperature, providing that the pitch changes rapidly

correspond to the ordered and disordered pHases measure the two temperaturés and T* for which, respec-
A planar front moving in thet-x direction is the solution tively, the two phases coexist and the nematic phase is com-
of the equations pletely unstable. Note that in this example, the ordered phase
(cholesteri¢ is observed at high temperature, whereas the
_ E—L g 5 disordered phaséemati¢ occurs at low temperatur@ear
B ¢= e Pxx Ty 2) the smectic phageWe can now estimate. In typical ex-
periments, T*-T,=1K, l,~P=102cm, and G
T=Ty+Gx, ©) =10 K/cm which givese=0.1. This value is much larger

than with usual thermodynamic phase transitions.
where g is a transport coefficient. The subscript means the _In the following, we discuss comparatively the phase tran-
differentiation with respect to that variabl@,is the imposed ~ Sition kinetics in “free” and “directional” growth. In free
temperature gradient, arky is a reference temperature that 9rowth, the_temperature. is constant and givenTyr Uy in
gives the originx=0 of thex axis perpendicular to the in- (he dimensionless form; the system responds by fixing the
terface.D=L/p is the diffusion coefficient of the order pa- !nterface velocity. In d|rect|qnal 9f°Wth* the sample Is placed
rameter(7] in a fixed temperature gradient and is pushed with a constant

. . : . velocity. In that way, the growth velocity is imposed and the
We rewrite Eqs(2) and(3) |nl me dimensionless form by system responds by fixing the position of the interféaed
scaling the free energy density=f/f,, wherefq is the  hence its temperaturén the thermal gradient.

“unit” of the free energy density, and by measuring length in | the following, we will callv the front velocity and
units ofl 4= (L/fo)2 and time in units of3/D, wherel 4 is  y,(v) the reduced temperature of the isothermal system in
the width of the spatially diffuse interface region whepe which the interface moves with velocity. In directional
varies rapidly. Equatio(8) sets the scale of the thermal field; solidification, we will take the origin of the axis, not afT,

| =AT/G, whereAT is the characteristic temperature varia- put at the temperatur&,=Ty(v) corresponding to the re-
tion of the system. We refer to the Appendix for a preciseduced temperaturey(v). This choice is more convenient
definition of f, andAT in the two cases of first- and second- from a theoretical point of view to treat the influence of the
order phase transitions. Eliminating overbar, E@sand(3)  thermal gradient as a perturbation to the isothermal system.

then become Finally, we will neglect the latent heat release and the change
in temperature of the interface due to heat diffusion. It is
b= bxx—Fo, (4) possible to show that this assumption can always be satisfied,
provided that the sample is thin enough: the front tempera-
U=ug+eX, (5 ture is thus fixed by the glass plates limiting the saniple
whereu=(T—T¢)/AT, Uup=(To—Tc)/AT (T, is the phase Ill. STATIC INTERFACE
transition temperatuje and e=14/1,=Gl,/AT is the ) -
(smal) parameter of the theory. A. First-order phase transition
In order to estimate the typical range of variationsoin A static front only exists when the two phases have the

usual experiments, let us consider two typical examples. Igame energy. In an isothermal system, this condition is full-
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filled at the transition temperatufie.. As a consequence, we
have according to our conventioig=T,., so thatuy=0
and u=g¢x (the origin of thex axis is atT;). By taking f
= p?(1— ¢)?>+u¢?, the steady form of Eqg4) and(5) be-
come

bxx=2h(1+ex—3p+2¢7), (6)

with the far-field boundary conditions,

1/2
] as

as

B 8(1+ex)

! 9

3
Dord= 2 1+

Ddisord= 0

b=

(7
With this choice off, ¢oq=1 and ¢gisor=0 at T, (x=0).
Note that belowT,, f has the ordered global minimum at
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FIG. 1. The numerical profile of the order parameter for the

bora= ${1+ (1—[8(1+up)/9])*%. This minimum becomes  static interface(first-order phase transition

metastable for &u,<1/8 and disappears far,>u, =1/8
(ug is the superheating limit The disordered fixed point

(iii) Solving the first-order problem in the inner region,

baisor= 0 is metastable for-1<uy<0 and does not occur We find the location of the interface:

whenuy<ud =—1 (uj is the undercooling limjt

To investigate the behavior of the planar stationary inter-

face in detail, we look for solutions of E¢F) for e<<1 in the

inner region corresponding to the spatially diffuse interface

w_\2

2 2 (10

Xi

region whereg varies rapidly, and in the outer region corre- 1ne thermal gradient now locates the positiqrof the in-

sponding to the bulk phases away from the interféase

terface and, consequently, its temperature. Note that

Refs.[10—17 for more detailed explanation and calculation =1/2 atx=x;, where the profile has its inflexion point.
However, a comment is in order to be done here. Because in This analytical result is only valid in the limi¢—0. To
the case of liquid crystals, the release of latent heat at thebtainx; at larger values of, we have solved numerically
interface(and as a consequence, the change in temperature Bfl- (6) using the differential equation solvefsbval and rk-
the interface due to heat diffusipcan be neglected, the fixed) of MATHCAD. Our numerical results are given in Figs.

usual heat equation of the phase-field mode|=(DV?2u
+ ¢/2) becomes Eq(5) that describes the extern@m-
posed thermal field. The consistency of Edd) and(5) with

1 and 2. Here and in the following, the numerical problem is
on an infinite domain. An accurate approach would be to
truncate the domain at a sufficiently large distance, rather

non-negative local entropy production is no more a condithan employing a coordinate transformation that maps the
tion, since the system described by these equations is n#ifinite interval to a finite interval. Since the significant

isolated.

variation of the order parameter is confined to@¢e) vi-

as follows:

(i) The leading-order solution fap, in the outer region is
given by

- 3 8(1+p)]*¥?
~ ¢Ord:Z 1+ 1_T as p<0,
bo= 8
Disora= 0 as p>0,
wherep=xe.

(ii) The leading order solution in the inner region is given
by

©)

_ 1 1 hx—xi
¢O(X)_§ tan W/

wherew= /2 is the characteristic thickness of the static in-
terface. We mention that Eq9) is the solution of Eq(6)
without temperature gradientG=0), but in this case the
constantx; (the location of the interfagds arbitrary.

tion term for the thermal field to determine the order param-

0.07 =

0.06 -

numerical
--------- asymptotic: u= e/2"

5
0.02 ]

0.01 4

0.00
0.00

T T T 1
0.04 0.06 0.08 0.10

€= GIJAT

T
0.02

FIG. 2. The temperature of the static interfdfiest-order phase

transition u; as a function ok; comparison with asymptotic result.
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eter profile. The order parameter profiles for the two limiting %%
values ofe are shown in Fig. 1. Fag=10"°, the numerical

profile is identical with the leading-order inner region profile

of the asymptotic analysi$Eqgs. (9) and (10)]. For ¢ 0.03 -
=101, the thermal gradient influences the profile of the
order parameterespecially in the wing of the ordered
phase. We define the position of the interface as the vadue

of x at which the¢ profile has an inflexion point. The re- <
duced temperature of the interfage= e x; as a function ot

is plotted in Fig. 2. The main result is that, due to the tem-
perature gradient, the front temperature increases. e~or
=<0.005 there is no difference between the numerical result
and that given by the leading-order solution in the inner re-
gion of the asymptotic analysf&q. (10)]; x;— +/2/2 andu; R S . ; —
—(2/2)e ase—0. Fore=0.005 the temperature increase -100 -50 0 50 100
is less important than that predicted by the asymptotic analy-
sis ate—0. This temperature increase of the front is small
but could be experimentally observed at the cholesteric-
nematic front for whiche=0.1.

£=10"
numerical result
d=¢%"?;x<0

$=0; x>0

0.02

0.01 —

(@

€=0.1
numerical result

B. Second-order phase transition

In this case, we také=3u¢?+ 1 ¢*, so that the steady
form of Egs.(4) and(5) become -

Dxx=eXP+ ¢3: (11

with the far-field boundary conditions

bor=(—ex)¥2 as x——, >
¢= Disora= 0 as X—x, 12

where we have takem,= 0 (the origin of thex axis is still at

Te in the temperature gradiont (second-order phase transitjpoomparison with the corresponding

1|n thze ?bsfnce Of thermal gradient, .the free energy far-field profile. The difference is used to define the interface for the
=3Ugp "+ 30" describes an ordered-disordered second-

" second-order phase transition.
order phase transition that takes plac& abr uy,=0. Below
this temperaturef has the ordered global minimum e, 4
=+/—Ug, Which disappears fof >T, (or us>0). The dis-

FIG. 3. The order parameter profile for the static interface

ture u; of the front(always defined at the inflexion point of

- _ X the ¢ profile) is plotted in Fig. 6. As in the case of first-order

zg;rriﬂr?'&'&%ﬂwﬁ‘g”d_sglfg'iz Zcxg°>h(;§ensdct;cnoor?%seasi_phase transitions, the front temperature tends to increase
0= P when G increases. This effect is completely negligible with

multaneously stable, a well-defined interface does not exisig | thermodynamic phase transitions, but could be de-

betgs%‘etggm’r;rvego%' hases coexist in a temperature r'u_acted experimentally at the cholesteric-nematic front, pro-
Yy P P 9ided this transition is second ordéhis condition can be

dient with an interface in betwedexperimentally observed : : o . o .
[8,13. To show that, we have solved numerically E¢kl) gicer;:aec\;ﬁg ;r;]is:)?f;g;:[(sf]l)e ld with a liquid crystal of negative
K .

and(12). The numerical results are presented in Figs. 3—6. |
Fig. 3 we show the numericdtontinuous curveand the
far-field (dashed curve obtained by neglecting elastjcits IV. MOVING INTERFACE
der parameter profilefFig. 3@ shows the results corre-
sponding toe =10"°, while those corresponding to=0.1
are presented in Fig.(B)]. We use the difference between = We now consider a planar ordered-disordered interface
these curves to define the order-disorder interface for thenoving with a constant velocity (in the directional solidi-
second-order phase transitigglotted in Fig. 4. In Fig. 5the  fication experiment;-V is the pulling sample velocijy The
width of the interfacgdefined as the width at half height of dimensionless interface velocity is given hy=VI,/D,

the difference given in Fig.)dis plotted as a function of. wherel ,/D is a velocity characteristic of the systeffor

An interesting result is that the interface width diverges ininstance, it is of the order of m/s at the solid-liquid transition
the limit e—0. On the other handy(e) decreases slowly in metals or plastic crystals, and of the order of mm/s at the
and tends to saturate at largeFinally, the reduced tempera- nematic-isotropic phase transiti¢ps,13,14). In the frame¢

A. First-order phase transition
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e=Gl/AT

FIG. 5. The plot of the interface width for the second-order
phase transition as a function of

3 8(1+ug)]*?
$(=2)= =7 1+|1- —5—
and
d(*) = dgisor= 0
is given by
-6 -4 2 0 2 4 6 H(&)= d)ord( 1—tanh§_ gi) , (15)
X 2 w
FIG. 4. The interface width for the second-order phase transiwhere
tion.
= V2 16
of the front ¢=x—uvt in free growth and=x in directional W= bord (16
solidification, Eqgs.(4) and(5) are rewritten as ) o o
is the characteristic thickness of the moving interface and
Geetvds=2¢h(L+Ugteé—3h+2¢7), (13)
0=3V2(org— 1) (17
with the far-field boundary conditions .
0.14 o
3 8(1+uy+eé)|¥? .
b= d)ord:Z 1+ 1_79 as §— —oo, o.12-.
Pisord™ 0 as §—w. 010 1
14 = J
5
We first recall the solution of TDGL equatidiid) in the & 006
absence of a thermal gradient0). This solution de- % |
scribes the dynamics of formation of the ordered phase wher 44,
the disordered phase is cooled quickly to a temperature a |
which it is less stable than the ordered phase. A crucial point .02
is to know whether the system has been quenched into
region where the disordered phase is metastablé<{u °-°°ooo o e o o b
<0) or unstable o< —1). In the temperature range 1 ) ’ . G,O,AT' ’ )
<up<O0, the stable ordered solution grows into the meta-
stable disordered region with velocity. The well-known FIG. 6. The temperature of the static interfa@@cond-order
solution of Eq.(13) subject to the boundary conditions phase transitionu; as a function of.
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is its velocity. The constarg; gives the location of the inter- crease in time at any fixed station in the laboratory frame.
face at time=0 in the frame of the laboratory. It is arbitrary The instability is then said to be absolute. The absolute-
because the position of the interface is arbitrary in an isothereonvective transition is reached wheg,=v, the condi-
mal system. Ifug=0, ¢,q=1, andv=0 (the two phases tion which yields

coexist in equilibrium, the well depths of the free energy are .

equal and the interface is stationams expected, Eq17) kK" =v—=2(14+ug) and v*=2y-2(1+up). (21)
yields a positive velocity when-1<uy<0 (the ordered _ o

phase grows into the disordered paed a negative onghe The gengral propertu_es of _frp_nt propagatlon into unstable
ordered phase meltsvhen u,>0. In the neighborhood of states drive the velocity of initially localized fronts to a se-

Uo=0, we can linearize the interface velocity in the under-'€cted valugu*, the so-called “linear marginal stability ve-
cooling, yielding locity.” v* is the minimum velocity of the continuum con-

vective instability branclithis statement can be qualitatively
v:—3\/§uo. (18) explained by the fact that the growth of a crystal is domi-
nated by the growth of the slowest facet
This is a well-known result of the classical Stefan model for ~ To describe the linear-nonlinear marginal stabiljylled-
solidification. We mention that when 1<u,<0, the TDGL  Pushed transition, we look at the asymptotic behavior of
Eq. (13) has a discrete set of moving front solutions corre-Solution(15): ¢|; ..~ exp(—2dqq€), which yields a wave
sponding to lower values of velocity. The stability analysisvectork=v2ggq. If k<k™ (uy<uo), the front is moving
shows that only solutiori15), corresponding to the largest ith ,* . If k>ki* (uy>uy.), the front is moving with *

velocity (17), is stablg and dynamically relevalis,16]. . :3\/§(¢0rd_1) (the nonlinear marginal stability velocity
Forup<—1, the disordered phase is thermodynamicallyrhe (ransition between these two regimes is reached when

unstable. Nucleation of the order takes place through a | ;» . . . o
“phase-ordering” kinetics process, in which the ordering%_k , the condition which yields the “critical” value of the

takes place quickly locally, although the system retains topo'gemperature,
logical defects, which it gradually expe[d7]. When the Upe= — 10. (22)
disordered state is unstable, depending on the nonlinearities,
one can distinguish between two regimes: For this temperature;* =v+=6\/§.
(i) Fronts whose propagation is drivéfpushed”) by the In directional solidification, the front is stationary in the

nonlinearities resemble very much to the fronts that propaframe of the laboratory, so that one must takex. The
gate into a metastable statpushed” or “nonlinear mar-  results of asymptotic analysis of EG.3) for e<1 are simi-
ginal stability” regime. lar to that presented in Sec. Ill A for the static interface:

(i) If linearities mainly cause saturation, fronts propagate (i) The leading-order solution fo?bo in the outer region
with a velocity determined by linearization about the u”'(p=sx) is given by

stable state, as if they were “pulled” by the linear stability

(“pulled” or “linear marginal stability” regime) [18]. - 3 8(1+ug+p)]*?
To calculate the linear marginal stability velocity, we lin- | do=711+| 1= ———35—— as p<0,
earize Eq(13) around the staté= ¢giso;,¢=0 and write the bo= 5
particular solution in the form of normal modes, Pisord= 0 as p=>0.
(23
D =Aexdi(ké—wt)]. 19
HEY Hitke=ot)] 19 (ii) The leading-order solution fap, in the inner region
The corresponding dispersion relation reads is given by
w=i[—2(1+ugy) —k?], (20) do(X)= ¢§,d<l_tanhX;in), (24)

whereuy<—1. When the wave numbéris given real, for
0<k<\—2(1+Uy), the temporal growth rate'(=Imw) is ~ Where

positive, the perturbation will grow out, and the basic front is 3
unstable. The long-time appearance of the profile is domi- ¢0rd:_[1+
nated by the mod&'(=Rek) corresponding to the maxi- 4
mum growth ratew/,,,. The conditiondw'/dk'=0 yields
wimaxz—2(1+ uo) +(k')2. The envelope velocity is given
by ven= ' a/K'=—{[2(1+Ug) I/k'} + k' and the group ve-
locity iS v = dwima/dK=2K. If the basic front is unstable

8(1+up)
9

1/ 2’

In this expressionyg is the reduced temperature of the iso-
thermal system in which the front propagates at velogitjt
is given by Eq.(17), or equivalently by

andver>v g [K'<\—=2(1+up)], at any fixed station, per- V2 w2

turbations grow initially and, as the tail of the wave packet o=~ g v~ g (25
passed by, they ultimately decrease exponentially; the insta-

bility is convective. If the basic state is unstable ang, (iii) Solving the first-order problem in the inner region,

<vgr [K'>\=2(1+up)], perturbations exponentially in- we find the solvability condition
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<
@
I 1
4 10
FIG. 7. The numerical profile of the order paramegro =1)
for the moving interfacésecond-order phase transitjon
. d¢0 12+
7wX eX[XUX)(ﬁoadX:O, (26) 1.0_'
0.8 -
which yields x;(v) in the limit of e—0. Note thatx;(v) < |
gives the position of the front with respect to the position 0.6 -
=0, which corresponds to the reduced temperaty@) T
given by Eq.(25). As a consequence;(v) [or equivalently °'4'_

(b)
Ui—Up=(T;—Tp)/AT=¢X;] shows directly the effect of the

thermal gradient on the front positiqor on the front tem- !
perature with respect t®,, the temperature of the isothermal 0.0
system at which the front propagates at veloaify in a
directional solidification experiment.

Because this problem cannot be solved analytically, we FIG. 9. Plots of the order parameter profilésst-order phase
did that numerically. The results are presented in Figs. 7—10ransition for two values of velocity.
The order parameter profildat v=1) for the two limiting
values ofe are shown in Fig. qin this graph the origin of ~leading-order inner profile of the asymptotic analy).
the x axis is taken at the temperatury(v=1)=T, (24)], whereas the influence of the thermal gradient becomes
—0.347AT [calculated from Eq(25)]). The results are very important ate=10"". We have also plotted in Fig. 8 the
similar to those obtained for a static interface in the sensgéeduced temperature of the interfage- u, as a function of
that fore=10"°, the numerical profile is identical with the

0.2

0.04...
0.000 - -
5 024
-0.002 4 §
s
- £
< 0004 4 iR 049
il =
S g U,
" =° -0.6 - u fore=0.1
- -0.006 - . s !
> numerical =
= q |- asymptotic "_
3
-0.008 - -0.8
T T T T T T T 1
-0.010 r T T T . 0.0 05 1.0 156 2,0
0.00 0.02 0.04 0.06 0.08 0.10
€= Gl JAT
FIG. 10. Plots of the temperatures of the moving interfdicst-
FIG. 8. The(relative) temperature of the moving interfaiérst- order phase transitigrin temperature gradient, and in an isother-
order phase transitioru; —uq as a function of. mal systemu,, respectively, as a function of velocity.
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e. Contrary to the static case, the thermal gradient tends t¢ 09
decrease the temperature of the interface at this velocity, bu
this effect is always very small even at large value ofThe

order parameter profiles for two values of the velocity are
represented in Fig. fFig. 9a) shows the results correspond-
ing to e=10"°, while those corresponding te=0.1 are
presented in Fig. ®)]. Again we emphasize that the origin

of the x axis is not taken at the same temperature for the twce
curves, but at temperatur@g(v) (in reality, the two curves

do not intersect if we take the same origifthe main feature

of these graphs is that the interface width decreases when th
velocity increasegpart of this effect is also characteristic of
isothermal systemisee Eq(16)]. The influence of the ther-

mal gradient on the interface temperature as a function ol
velocity is shown in Fig. 10. We mention that the curve
corresponding te=10"° coincides with theu, curve (the
influence of the thermal gradient is completely negligible i £16 11, The order parameter profilegecond-order phase tran-
this case The influence becomes significamtith respect to  sjtion) for three different values of velocity.

ug) whene =0.1. We distinguish two different region§) at

relatively small velocities {<0.8), the temperature of the ¢—0.1. In directional solidificationy is the imposed veloc-
interface is larger thaffiy, the undercooling temperature cor- jty. By identifying v with v* in the corresponding isothermal

responding to the isothermal system, diglat large veloci-  system, we get from Eq29) the reduced temperature in this
ties (v>0.8), the influence of the thermal gradient is in op- case:

posite direction.

Uo=—v?/4. (30)
B. Second-order phase transition . . .
o o . . The order parameter profiles for three different velocities
_In directional solidification, the TDGL equation describ- re represented in Fig. 1tvith the same observation that the
ing the second-order phase transition has the form origin of the x axis depends om for each profilg. They
_ 3 show that the interface width decreases when the velocity
Proct v b= (U eX) b+ 47, @7 increases. The influence of the thermal gradient on the tem-

with the far-field boundary conditions perature of the interfac@gain defined at the inflexion point
of the ¢ profile) is shown in Fig. 12. Again the influence of

Gor=(—Ug—ex)¥? as x——x, the thermal gradient is completely negligible fer=10"°

= a0 as xo. 28) (the corresponding curve coincides with thg one. For ¢

=0.1, its influence becomes significant and much larger than

In the absence of thermal gradiefisothermal systejn in the case of the f|rst-ord_er phase transition.

forup<O0 (i.e., T<T,), the TDGL EQq.(27) (in whichx must . Some comments are in order to be done her_e. For an
be replaced by=x—vt) describes the dynamics of forma- isothermal system, the dynamics of front propagation in the
tion of an ordered phase when the disordered parent phase is
cooled quickly at a temperature at which the ordered phase ii 0.0
thermodynamically stable and the disordered phase is un
stable. Due to instability of the disordered phase, the nuclet; ™7
ation of the ordered phase takes place only through a “phase=, 44
ordering” kinetics proces§l17]. In this case, Eq(27) has a
solution for any positive value of. From the continuous
family of uniformly translating front solutions the system
selects the “pulled” front which moves with a velocity* ]
determined by the linear behavior of the dynamical equation= -1.0-
(27) [16,18. The origin lies in the fact that any perturbation &£ __ ]
about the unstablélisorderedl phase grows out and spreads &% |
by itself. This leads to a natural spreading velocity of linear  -1.4
perturbations, and* is nothing but this velocity itselfthe 1
linear marginal stability velocify Equation(27) gives (see

JAT; u=(T-T)/A

-1.6 v T T T
0.0 05 1.0 1.5 2.0

the analysis presented in Sec. IV;A v
v* =2+—Uy. (29 FIG. 12. Plots of the temperatures of the moving interface

(second-order phase transitjan temperature gradient, and in an
The numerical results are presented in Figs. 11 and 12 fasothermal systenu,, respectively, as a function of velocity.
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case of first-order phase transitippropagation of a stable

(ordep state into a metastabl@isordej on€] is fundamen- 0.15 ~
tally different from that in the second-order phase transition 1
[propagation of a stabl@rder state into an unstablglisor- 0.10
den onel. In the first case, the propagation of the front is 1
driven by the nonlinearities of Eq13) (considered fore 0.05

=0), and as a consequence its velocity is “fixed” by the
temperature. In the second case, the dynamics of the front i7 000

governed by the linearization of EQR7) (considered for 1 £=0.1
=0) about the unstablédisordej state, and as a conse- -0.05 4
guence, there is a continous $fer any positive value ob) 1

of solutions (the continuum convective instability branch; -0.10
see Sec. IV A To determine the front velocity, the experi- 1
mental observatiofthat the growth of a crystal is dominated -0.15 T T T T T T T T T i
by the growth of the slowest fadeis used, and so* (the 0 08 e, 02 00
minimum velocity of the continuum convective instability

branch, usually called the linear marginal stability velocity

FIG. 13. The temperatung of the melting interface in tempera-
ture gradient as a function of velocity.

is obtained.
In a thermal gradient, the velocity is imposed and the
system responds by fixing the interface positign and so First, we have studied the solutions corresponding to a

its temperatureu;=ug+eX;. In our calculations we have stationary planar interface. In order to see the influence of
conventionally considered, as the reduced temperature of the thermal gradient on the interface, we have studied sepa-
the isothermal system in which the interface moves with theately the cases of first- and second-order phase transitions.
same velocityy [see Eq.(25) for the first-order phase tran- In the former case, we have shown that the thermal gradient
sition and, respectively, Eq30) for the second-order phase fixes the position of the interfacégiven by the inflexion
transitior]. We emphasize that the choice wf is arbitrary;  point of the ¢ order parameter profilewhich we were able
on the other hand, the interface temperatyra the thermal to calculate analytically from an asymptotic analysis in the
gradient only depends on velocityand thermal gradient, limit e—0 and numerically at large. In the latter case
and is independent of the choice wf. The presence of the (second-order phase transitignghe thermal gradienfixes
thermal gradient does not change the main feature of ththe order parameter profile and its position. This is com-
first-order phase transition concerning the propagation of theletely different from what happens in an isothermal system
stable state into the metastable one. Thus, it may be consiéh which there is no front at (at this temperaturep=0 in
ered as a perturbation to the isothermal system, its influendeoth phases To define the interface width in a thermal gra-
on the interface temperature being small even for large valdient (e #0), we have calculated the difference between the
ues ofe (see Fig. 10 On the contrary, the influence of the numerical order parameter profile and the corresponding far-
thermal gradient becomes important in the case of secondield profile (obtained by neglecting elasticjtyThe interface
order phase transition due to the fact that now the disordewidth diverges wher: —0 and tends to saturate at large
state is no longer unstable. This leads to two main differ- Second, we have analyzed the moving planar interface
ences. First, for given values of velocityand thermal gra- solutions. Again, we have studied separately the two cases of
dient e, the system responds by selecting a well-definedirst- and second-order phase transtions. In the former case,
front with an interface temperaturg significantly different  we have solved the problem of front propagation in an iso-
from the corresponding temperatwrgof the isothermal sys- thermal system: in particular, we have identified the linear-
tem given by the marginal linear stability principleee Fig. nonlinear marginal stabilitypushed-pullef transition. We
12). Second, in the case of the second-order phase transitiohave then performed an asymptotic analysis of the problem
for the isothermal system there is froelting front at tem-  in directional growth in the limie —0: in this way, we have
peratures larger thah, . On the contrary, in the “directional found the ¢ profile and the solvability condition that gives
melting” the front is experimentally observed and describedthe position of the front in the temperature gradient. Then,
by the model(the corresponding interface temperature as ave have solved numerically the problem and found that the
function of velocity is shown in Fig. 23 influence of the thermal gradient becomes important when
£=0.1. We have observed that the interface width decreases
when the velocity increases, as in isothermal systems. In the
latter case of second second-order phase transitions, we have
Using a Landau form of the free energy density, we havdound that the front isvell selectedwhatever the velocity.
studied first- and second-order phase transitions in direcFhis result contrasts with what happens in free growth where
tional growth. there is a continuum of solutions at temperature lower than
The two lengthd ;= (L/fo)¥? andl,=AT/G are charac- T, and no front at temperature larger thag.
teristic of the order parameter profile and of the temperature All these results need an experimental test. We think that
field, respectively, and the ratio=1,/1, is the (smal) pa-  the cholesteric-nematic front near a smectic phase is a very
rameter of the theory. good candidate for doing this. Indeed, scales with the

V. CONCLUSIONS
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cholesteric equilibrium pitch, and so can be made as large dsave the following valuesay=33Xx10* erg/K cn?, By
we want by changing the concentration of chiral molecules=89x 10° erg/cn¥, andCy=56x% 10° erg/cn? [21]).

The order of the transition can be changed too. For instance, We scale the variables in the following way:

we can play with the anisotropy of the elastic Frank con-

stants; although, in practice, it seems very difficult to find — 6Cnop  — f f
materials in which the transition is of second order; another = B. ' T R4 f
) . " N By 0
method is to apply a magnetic or an electric field to a sample N
of negative diamagnetic or dielectric anisotropy. In this case, 24ZC§
the field favors the chiral phase that unwinds in the nematic
phase near the smectic phase because of the divergence of 24a\C\(T-T,) T-T¢
the twist and the bend elastic constants: it can be shown that u= 2 = <" (A2)
o N o BN T.—T
the phase transition is second order in this case, providing
that the sample is thin enough. Eliminating overbars, the nondimensional free energy den-

This model omits some features of the relevant physics. Igjty becomes
particular, a hydrodynamical coupling between the order pa-
rameter profile and the velocity field in the medium could f=p*(1-¢)*+ug?. (A3)
exist and be responsible for some unexplained instabilities
observed at large velocity by Bechhoefer at the nematic
isotropic interface[19] or by Baudry at the nematic-
cholesteric interfacg20]. We shall address this aspect of the
problem in a future work.

Thus, in this case the “unit” of the free energy density is
fo=Br/24°C3 andAT=T,— T* =B2/24a\Cy . In 8CB, for
instance f,=6.2x 10* erg/cn? andAT=1.8 K.

On the other hand, the corresponding Landau—de Gennes
free energy density for the nematic—smedighase transi-
tion (taken here as an example of a second-order phase tran-
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APPENDIX: THE LANDAU —DE GENNES FREE ENERGY X 10° erg/Kcn.? and Cp=4X 10P erg/cm” [21]. We scale
DENSITIES FOR THE NEMATIC AND SMECTIC- A the variables in the following way:

PHASES
. . L — f  f aa(T—Te)
We refer to the nematic-isotropic phase transition as an =Cc. i U (A5)
example of first-order phase transition. The corresponding A 10 A
Landau—de Gennes free energy density is given by The nondimensional form of the free energy density becomes
f= S (T T*) 2= o Byg™+ - Cug® Al Lugr Sy
=5an(T=T")¢"= 7Bnd”+ ;Cnd", (AL f=Sug’+ 7 ¢" (A6)

where¢ is the scalar orientational order parameleér,is the  In this case the “unit” of the free energy density fig=Cx
undercooling limit of the isotropic phase, and the coefficientand AT=Cj/an. In  8CB, for instance, fo=4
ay, By, andCy depend only on the substan@er 8CB they  x 1P erg/cn? andAT=8 K.
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