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Phase-field model for front propagation in a temperature gradient:
Selection and competition between the correlation and the thermal lengths
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A phase-field model is presented to study the propagation and the selection of a front in directional growth.
The phase transition can be first or second order and is described by a nonconserved order parameter. In
general, the thermal lengthl u ~inversely proportional to the temperature gradient! is much larger than the
correlation lengthl f , which gives the width of the front, and there is no direct competition between them
(«5 l f / l u!1). In this paper, we consider a situation where these two lengths can be of the same order of
magnitude («5 l f / l u close to 1). This happens in liquid crystals at the nematic-cholesteric phase transition.
The problem of the front selection is solved theoretically by first performing an asymptotic analysis of the
governing equations in the limit«→0, and then by solving the equations numerically. The main result is that
the front is selected in a single way~no continuum of solutions! as long as«Þ0, whatever the velocity and the
order of the phase transition. Finally, we show that the order parameter profile and the front temperature can
change significantly when« approaches 1.

DOI: 10.1103/PhysRevE.66.066117 PACS number~s!: 05.70.Ln, 64.70.Md
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I. INTRODUCTION

The phase-field formulation@1# replaces the free
boundary problem associated with the sharp interface m
of an interface by a coupled pair of nonlinear reactio
diffusion equations. The spatial and temporal variations
the order parameter phase field is governed by the ti
dependent Ginzburg-Landau~TDGL! equation. The second
equation~for temperature! is based on a modification of th
heat equation to allow a source term that accounts for la
heat production at a moving interface.

The relevant phase-field theory of liquid crystals@2,3#
turns out to be just the dynamical generalization of the
miliar Landau–de Gennes theory of liquid crystals interfa
@4#. In this paper we develop a phase-field model to study
directional solidification of a liquid crystal, in particular,
moving interphase interface as it is dragged along at a fix
controllable velocity in a temperature gradient, which is a
controllable. Even if we shall discuss the problem only fro
a theoretical point of view, we briefly describe the expe
ment @5#. A ~nearly! two-dimensional sample~a thin sand-
wich of liquid crystal between two glass plates! is placed
into a temperature gradient that points in the plane of
sample. The temperature gradient is set by putting the sam
across the gap between two ovens. The temperatures o
ovens are chosen so that there is a phase transition in
tween, giving rise to a straight interface. The sample is
into motion at a velocityV; after a transient, the interfac
freezes at2V in order to stay at the same temperature.
ignore the release of latent heat at the interface and ass
that the temperature field is imposed by the glass plates

All the theoretical results obtained in this paper apply
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first- and second-order phase transitions described by a
conserved order parameterf. There are two typical lengths
in the problem: the thermal lengthl u inversely proportional
to the temperature gradient and proportional to a tempera
shift characteristic of the phase transition, and the correla
lengthl f that gives the width of the front, i.e., of thef order
parameter profile. In the following, we set«5 l f / l u . For
usual phase transitions«!1, so that« can be considered a
the small parameter of the theory. A very classical exam
of first-order phase transition in liquid crystals is th
nematic-isotropic phase transition. As examples of seco
order phase transitions, we can cite the nematic–smectA
transition ~which can also be first order, depending on t
material! and the smectic-A–smectic-C transition. In all
these examples,« is of the order of 1025. In some experi-
ment,« can be much larger and close to 1. This is the cas
the cholesteric-nematic phase transition@6# which we de-
scribe in detail in the following section. In addition, th
phase transition can be first or second order, depending
the anisotropy of the Frank elastic constants. For this rea
it constitutes an unique example of phase transition wh
the correlation length can be of the same order as the the
length associated to the temperature gradient. In the foll
ing, and to present the subject in a general form, the
symmetric phase will be called as the ordered phase and
more symmetric one as the disordered phase.

This paper is organized as follows. In Sec. II, we descr
the basic model and give the governing equations. In Sec
we study the case of a static interface in a temperature
dient when the transition is first or second order. A
asymptotic analysis as a function of the small parametere is
given when the phase transition is of first order. The probl
is solved numerically in other cases. In Sec. IV, we disc
the case of a moving interface. This section includes
analysis of the ‘‘pushed-pulled’’ transition in free growth~at
d-
©2002 The American Physical Society17-1
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V. POPA-NITA AND P. OSWALD PHYSICAL REVIEW E66, 066117 ~2002!
zero-temperature gradient!, as well as an asymptotic analys
of front selection at small« when the transition is of firs
order. The equations are also solved numerically and
problem of the front selection for second-order phase tr
stion and first-order phase transition beyond the spino
limit are discussed. In Sec. V, we summarize our results
present some brief conclusions.

II. THE MODEL

Within a mesoscopic approach such as ours, the free
ergy of a single-component system is represented by
functional

F5E F1

2
Lu“fu21 f ~f,T!GdrW, ~1!

whereL is an elastic constant,f(rW,t) the nonconserved or
der parameter, andT the temperature. The form of the fre
energy densityf (f,T) depends on the order of the pha
transition @e.g., for a first-order phase transition inside t
region enclosed by the spinodal,f (f,T) has a double-well
structure with respect tof in which the two local minima
correspond to the ordered and disordered phases#.

A planar front moving in the1x direction is the solution
of the equations

b f t52
dF
df

5Lfxx2 f f , ~2!

T5T01Gx, ~3!

whereb is a transport coefficient. The subscript means
differentiation with respect to that variable,G is the imposed
temperature gradient, andT0 is a reference temperature th
gives the originx50 of the x axis perpendicular to the in
terface.D5L/b is the diffusion coefficient of the order pa
rameter@7#.

We rewrite Eqs.~2! and~3! in the dimensionless form by
scaling the free energy density:f̄ 5 f / f 0, where f 0 is the
‘‘unit’’ of the free energy density, and by measuring length
units of l f5(L/ f 0)1/2 and time in units ofl f

2 /D, wherel f is
the width of the spatially diffuse interface region wheref
varies rapidly. Equation~3! sets the scale of the thermal fiel
l u5DT/G, whereDT is the characteristic temperature vari
tion of the system. We refer to the Appendix for a prec
definition of f 0 andDT in the two cases of first- and secon
order phase transitions. Eliminating overbar, Eqs.~2! and~3!
then become

f t5fxx2 f f , ~4!

u5u01«x, ~5!

whereu5(T2Tc)/DT, u05(T02Tc)/DT (Tc is the phase
transition temperature!, and «5 l f / l u5Glf /DT is the
~small! parameter of the theory.

In order to estimate the typical range of variation of« in
usual experiments, let us consider two typical examples
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the case of the nematic-isotropic phase transition,DT
.1 K, G.10 K/cm, l f.1026 cm, so that«.1025 @5,7#.
The same order of magnitude is obtained for the smec
nematic interface@8#.

Much larger value of« is expected for the cholesteric
nematic front@6#. This front is observed when a cholester
phase is sandwiched between two parallel glass plates tre
in homeotropic anchoring. This boundary condition is i
compatible with the helical structure of the cholesteric pha
Because of this frustration, the helix unwinds and a hom
tropic nematic phase is obtained. In usual cholesterics,
transition ~of the same type as the Frederiks transition! is
first order. The order parameter is the maximum tilt angleu
of the director in the sample:u50 in the nematic andu
Þ0 in the cholesteric. The control parameter is the ratioC
5d/P of the sample thickness over the equilibrium chole
teric pitch. In a typical experiment, the two phases coexis
Cc.1.1 while the nematic phase is unstable belowC*
.0.9. This special phase transition can be observed
changing the sample thickness~which is not convenient! or
the temperature, providing that the pitch changes rap
with the temperature. This happens near a smectic ph
where the pitch diverges. In this case, it is possible to
serve the transition in a sample of a given thickness and
measure the two temperaturesTc andT* for which, respec-
tively, the two phases coexist and the nematic phase is c
pletely unstable. Note that in this example, the ordered ph
~cholesteric! is observed at high temperature, whereas
disordered phase~nematic! occurs at low temperature~near
the smectic phase!. We can now estimate«. In typical ex-
periments, T* 2Tc.1 K, l f.P.1022 cm, and G
.10 K/cm which gives«.0.1. This value is much large
than with usual thermodynamic phase transitions.

In the following, we discuss comparatively the phase tra
sition kinetics in ‘‘free’’ and ‘‘directional’’ growth. In free
growth, the temperature is constant and given byT0 or u0 in
the dimensionless form; the system responds by fixing
interface velocity. In directional growth, the sample is plac
in a fixed temperature gradient and is pushed with a cons
velocity. In that way, the growth velocity is imposed and t
system responds by fixing the position of the interface~and
hence its temperature! in the thermal gradient.

In the following, we will call v the front velocity and
u0(v) the reduced temperature of the isothermal system
which the interface moves with velocityv. In directional
solidification, we will take the origin of thex axis, not atTc ,
but at the temperatureT05T0(v) corresponding to the re
duced temperatureu0(v). This choice is more convenien
from a theoretical point of view to treat the influence of t
thermal gradient as a perturbation to the isothermal syst
Finally, we will neglect the latent heat release and the cha
in temperature of the interface due to heat diffusion. It
possible to show that this assumption can always be satis
provided that the sample is thin enough: the front tempe
ture is thus fixed by the glass plates limiting the sample@9#.

III. STATIC INTERFACE

A. First-order phase transition

A static front only exists when the two phases have
same energy. In an isothermal system, this condition is f
7-2
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PHASE-FIELD MODEL FOR FRONT PROPAGATION IN . . . PHYSICAL REVIEW E66, 066117 ~2002!
filled at the transition temperatureTc . As a consequence, w
have according to our conventionsT05Tc , so thatu050
and u5«x ~the origin of thex axis is atTc). By taking f
5f2(12f)21uf2, the steady form of Eqs.~4! and~5! be-
come

fxx52f~11«x23f12f2!, ~6!

with the far-field boundary conditions,

f5H ford5
3

4 H 11F12
8~11«x!

9 G1/2J as x→2`,

fdisord50 as x→`.

~7!
With this choice off, ford51 andfdisord50 at Tc (x50).
Note that belowTc , f has the ordered global minimum a
ford5

3
4 $11(12@8(11u0)/9#)1/2%. This minimum becomes

metastable for 0,u0,1/8 and disappears foru0.u0
151/8

(u0
1 is the superheating limit!. The disordered fixed poin

fdisord50 is metastable for21,u0,0 and does not occu
whenu0,u0* 521 (u0* is the undercooling limit!.

To investigate the behavior of the planar stationary int
face in detail, we look for solutions of Eq.~6! for «!1 in the
inner region corresponding to the spatially diffuse interfa
region wheref varies rapidly, and in the outer region corr
sponding to the bulk phases away from the interface~see
Refs.@10–12# for more detailed explanation and calculation!.
However, a comment is in order to be done here. Becaus
the case of liquid crystals, the release of latent heat at
interface~and as a consequence, the change in temperatu
the interface due to heat diffusion! can be neglected, th
usual heat equation of the phase-field model (ut5D¹2u
1f t/2) becomes Eq.~5! that describes the external~im-
posed! thermal field. The consistency of Eqs.~4! and~5! with
non-negative local entropy production is no more a con
tion, since the system described by these equations is
isolated.

The results of the asymptotic analysis can be summar
as follows:

~i! The leading-order solution forf̃0 in the outer region is
given by

f̃05H f̃ord5
3

4 H 11F12
8~11r!

9 G1/2J as r,0,

f̃disord50 as r.0,

~8!

wherer5x«.
~ii ! The leading order solution in the inner region is giv

by

f0~x!5
1

2 S 12tanh
x2xi

w D , ~9!

wherew5A2 is the characteristic thickness of the static
terface. We mention that Eq.~9! is the solution of Eq.~6!
without temperature gradient (G50), but in this case the
constantxi ~the location of the interface! is arbitrary.
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~iii ! Solving the first-order problem in the inner regio
we find the location of the interface:

xi5
w

2
5

A2

2
. ~10!

The thermal gradient now locates the positionxi of the in-
terface and, consequently, its temperature. Note thatf0
51/2 atx5xi , where the profile has its inflexion point.

This analytical result is only valid in the limit«→0. To
obtainxi at larger values of«, we have solved numerically
Eq. ~6! using the differential equation solvers~sbval and rk-
fixed! of MATHCAD. Our numerical results are given in Fig
1 and 2. Here and in the following, the numerical problem
on an infinite domain. An accurate approach would be
truncate the domain at a sufficiently large distance, rat
than employing a coordinate transformation that maps
infinite interval to a finite interval. Since the significan
variation of the order parameter is confined to anO(«) vi-
cinity of the interface, we do not need to introduce a satu
tion term for the thermal field to determine the order para

FIG. 1. The numerical profile of the order parameter for t
static interface~first-order phase transition!.

FIG. 2. The temperature of the static interface~first-order phase
transition! ui as a function of«; comparison with asymptotic result
7-3
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V. POPA-NITA AND P. OSWALD PHYSICAL REVIEW E66, 066117 ~2002!
eter profile. The order parameter profiles for the two limiti
values of« are shown in Fig. 1. For«51025, the numerical
profile is identical with the leading-order inner region profi
of the asymptotic analysis@Eqs. ~9! and ~10!#. For «
51021, the thermal gradient influences the profile of t
order parameter~especially in the wing of the ordere
phase!. We define the position of the interface as the valuexi
of x at which thef profile has an inflexion point. The re
duced temperature of the interfaceui5«xi as a function of«
is plotted in Fig. 2. The main result is that, due to the te
perature gradient, the front temperature increases. Fo«
<0.005 there is no difference between the numerical re
and that given by the leading-order solution in the inner
gion of the asymptotic analysis@Eq. ~10!#; xi→A2/2 andui

→(A2/2)« as«→0. For«>0.005 the temperature increas
is less important than that predicted by the asymptotic an
sis at«→0. This temperature increase of the front is sm
but could be experimentally observed at the choleste
nematic front for which«.0.1.

B. Second-order phase transition

In this case, we takef 5 1
2 uf21 1

4 f4, so that the steady
form of Eqs.~4! and ~5! become

fxx5«xf1f3, ~11!

with the far-field boundary conditions

f5H ford5~2«x!1/2 as x→2`,

fdisord50 as x→`,
~12!

where we have takenu050 ~the origin of thex axis is still at
Tc in the temperature gradient!.

In the absence of thermal gradient, the free energf
5 1

2 u0f21 1
4 f4 describes an ordered-disordered seco

order phase transition that takes place atTc or u050. Below
this temperature,f has the ordered global minimum atford

5A2u0, which disappears forT.Tc ~or u0.0). The dis-
ordered minimumfdisord50 exists foru0.0 and becomes a
maximum whenu0,0. Since the two phases cannot be
multaneously stable, a well-defined interface does not e
between them, even atTc .

On the contrary, both phases coexist in a temperature
dient with an interface in between~experimentally observed!
@8,13#. To show that, we have solved numerically Eqs.~11!
and~12!. The numerical results are presented in Figs. 3–6
Fig. 3 we show the numerical~continuous curve! and the
far-field ~dashed curve obtained by neglecting elasticity! or-
der parameter profiles@Fig. 3~a! shows the results corre
sponding to«51025, while those corresponding to«50.1
are presented in Fig. 3~b!#. We use the difference betwee
these curves to define the order-disorder interface for
second-order phase transition~plotted in Fig. 4!. In Fig. 5 the
width of the interface~defined as the width at half height o
the difference given in Fig. 4! is plotted as a function of«.
An interesting result is that the interface width diverges
the limit «→0. On the other hand,w(«) decreases slowly
and tends to saturate at large«. Finally, the reduced tempera
06611
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ture ui of the front ~always defined at the inflexion point o
thef profile! is plotted in Fig. 6. As in the case of first-orde
phase transitions, the front temperature tends to incre
whenG increases. This effect is completely negligible wi
usual thermodynamic phase transitions, but could be
tected experimentally at the cholesteric-nematic front, p
vided this transition is second order~this condition can be
achieved in electric field with a liquid crystal of negativ
dielectric anisotropy@6#!.

IV. MOVING INTERFACE

A. First-order phase transition

We now consider a planar ordered-disordered interf
moving with a constant velocityV ~in the directional solidi-
fication experiment,2V is the pulling sample velocity!. The
dimensionless interface velocity is given byv5Vlf /D,
where l f /D is a velocity characteristic of the system~for
instance, it is of the order of m/s at the solid-liquid transiti
in metals or plastic crystals, and of the order of mm/s at
nematic-isotropic phase transition@5,13,14#!. In the framej

FIG. 3. The order parameter profile for the static interfa
~second-order phase transition!; comparison with the correspondin
far-field profile. The difference is used to define the interface for
second-order phase transition.
7-4
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PHASE-FIELD MODEL FOR FRONT PROPAGATION IN . . . PHYSICAL REVIEW E66, 066117 ~2002!
of the front (j5x2vt in free growth andj5x in directional
solidification!, Eqs.~4! and ~5! are rewritten as

fjj1vfj52f~11u01«j23f12f2!, ~13!

with the far-field boundary conditions

f5H ford5
3

4 H 11F12
8~11u01«j!

9 G1/2J as j→2`,

fdisord50 as j→`.
~14!

We first recall the solution of TDGL equation~13! in the
absence of a thermal gradient («50). This solution de-
scribes the dynamics of formation of the ordered phase w
the disordered phase is cooled quickly to a temperatur
which it is less stable than the ordered phase. A crucial p
is to know whether the system has been quenched in
region where the disordered phase is metastable (21,u0
,0) or unstable (u0,21). In the temperature range21
,u0,0, the stable ordered solution grows into the me
stable disordered region with velocityv. The well-known
solution of Eq.~13! subject to the boundary conditions

FIG. 4. The interface width for the second-order phase tra
tion.
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f~2`!5ford5
3

4H 11F12
8~11u0!

9 G1/2J
and

f~`!5fdisord50

is given by

f~j!5
ford

2 S 12tanh
j2j i

w D , ~15!

where

w5
A2

ford
~16!

is the characteristic thickness of the moving interface an

v53A2~ford21! ~17!

i-

FIG. 5. The plot of the interface width for the second-ord
phase transition as a function of«.

FIG. 6. The temperature of the static interface~second-order
phase transition! ui as a function of«.
7-5
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V. POPA-NITA AND P. OSWALD PHYSICAL REVIEW E66, 066117 ~2002!
is its velocity. The constantj i gives the location of the inter
face at timet50 in the frame of the laboratory. It is arbitrar
because the position of the interface is arbitrary in an isoth
mal system. Ifu050, ford51, andv50 ~the two phases
coexist in equilibrium, the well depths of the free energy a
equal and the interface is stationary!. As expected, Eq.~17!
yields a positive velocity when21,u0,0 ~the ordered
phase grows into the disordered one! and a negative one~the
ordered phase melts! when u0.0. In the neighborhood o
u050, we can linearize the interface velocity in the und
cooling, yielding

v.23A2u0 . ~18!

This is a well-known result of the classical Stefan model
solidification. We mention that when21,u0,0, the TDGL
Eq. ~13! has a discrete set of moving front solutions cor
sponding to lower values of velocity. The stability analys
shows that only solution~15!, corresponding to the larges
velocity ~17!, is stable and dynamically relevant@15,16#.

For u0,21, the disordered phase is thermodynamica
unstable. Nucleation of the order takes place throug
‘‘phase-ordering’’ kinetics process, in which the orderin
takes place quickly locally, although the system retains to
logical defects, which it gradually expels@17#. When the
disordered state is unstable, depending on the nonlinear
one can distinguish between two regimes:

~i! Fronts whose propagation is driven~‘‘pushed’’! by the
nonlinearities resemble very much to the fronts that pro
gate into a metastable state~‘‘pushed’’ or ‘‘nonlinear mar-
ginal stability’’ regime!.

~ii ! If linearities mainly cause saturation, fronts propag
with a velocity determined by linearization about the u
stable state, as if they were ‘‘pulled’’ by the linear stabili
~‘‘pulled’’ or ‘‘linear marginal stability’’ regime! @18#.

To calculate the linear marginal stability velocity, we lin
earize Eq.~13! around the statef5fdisord50 and write the
particular solution in the form of normal modes,

f~j,t !5A exp@ i ~kj2vt !#. ~19!

The corresponding dispersion relation reads

v5 i @22~11u0!2k2#, ~20!

whereu0,21. When the wave numberk is given real, for
0,k,A22(11u0), the temporal growth ratev i([Imv) is
positive, the perturbation will grow out, and the basic front
unstable. The long-time appearance of the profile is do
nated by the modekr([Rek) corresponding to the maxi
mum growth ratevmax

i . The condition]v i /]kr50 yields
vmax

i 522(11u0)1(ki)2. The envelope velocity is given
by ven5vmax

i /ki52$@2(11u0)#/ki%1ki and the group ve-
locity is vgr5]vmax

i /]ki52ki. If the basic front is unstable
and ven.vgr @ki,A22(11u0)#, at any fixed station, per
turbations grow initially and, as the tail of the wave pack
passed by, they ultimately decrease exponentially; the in
bility is convective. If the basic state is unstable andven

,vgr @ki.A22(11u0)#, perturbations exponentially in
06611
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The instability is then said to be absolute. The absolu
convective transition is reached whenven5vgr , the condi-
tion which yields

ki* 5A22~11u0! and v* 52A22~11u0!. ~21!

The general properties of front propagation into unsta
states drive the velocity of initially localized fronts to a s
lected valuev* , the so-called ‘‘linear marginal stability ve
locity.’’ v* is the minimum velocity of the continuum con
vective instability branch~this statement can be qualitative
explained by the fact that the growth of a crystal is dom
nated by the growth of the slowest facet!.

To describe the linear-nonlinear marginal stability~pulled-
pushed! transition, we look at the asymptotic behavior
solution~15!: fuj→`;exp(2A2fordj), which yields a wave
vectork5A2ford. If k,ki* (u0,u0c), the front is moving
with v* . If k.ki* (u0.u0c), the front is moving withv1

53A2(ford21) ~the nonlinear marginal stability velocity!.
The transition between these two regimes is reached w
k5ki* , the condition which yields the ‘‘critical’’ value of the
temperature;

u0c5210. ~22!

For this temperature,v* 5v156A2.
In directional solidification, the front is stationary in th

frame of the laboratory, so that one must takej5x. The
results of asymptotic analysis of Eq.~13! for «!1 are simi-
lar to that presented in Sec. III A for the static interface:

~i! The leading-order solution forf̃0 in the outer region
(r5«x) is given by

f̃05H f̃ord5
3

4 H 11F12
8~11u01r!

9 G1/2J as r,0,

f̃disord50 as r.0.
~23!

~ii ! The leading-order solution forf0 in the inner region
is given by

f0~x!5
ford

2 S 12tanh
x2xi

w D , ~24!

where

ford5
3

4 H 11F12
8~11u0!

9 G1/2J .

In this expression,u0 is the reduced temperature of the is
thermal system in which the front propagates at velocityv. It
is given by Eq.~17!, or equivalently by

u052
A2

6
v2

v2

9
. ~25!

~iii ! Solving the first-order problem in the inner regio
we find the solvability condition
7-6
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E
2`

`

x exp~vx!f0

df0

dx
dx50, ~26!

which yields xi(v) in the limit of «→0. Note thatxi(v)
gives the position of the front with respect to the positionx
50, which corresponds to the reduced temperatureu0(v)
given by Eq.~25!. As a consequence,xi(v) @or equivalently
ui2u05(Ti2T0)/DT5«xi ] shows directly the effect of the
thermal gradient on the front position~or on the front tem-
perature with respect toT0, the temperature of the isotherm
system at which the front propagates at velocityv) in a
directional solidification experiment.

Because this problem cannot be solved analytically,
did that numerically. The results are presented in Figs. 7–
The order parameter profiles~at v51) for the two limiting
values of« are shown in Fig. 7„in this graph the origin of
the x axis is taken at the temperatureT0(v51)5Tc
20.347DT @calculated from Eq.~25!#…. The results are very
similar to those obtained for a static interface in the se
that for «51025, the numerical profile is identical with th

FIG. 7. The numerical profile of the order parameter~at v51)
for the moving interface~second-order phase transition!.

FIG. 8. The~relative! temperature of the moving interface~first-
order phase transition! ui2u0 as a function of«.
06611
e
0.

e

leading-order inner profile of the asymptotic analysis@Eq.
~24!#, whereas the influence of the thermal gradient becom
important at«51021. We have also plotted in Fig. 8 th
reduced temperature of the interfaceui2u0 as a function of

FIG. 9. Plots of the order parameter profiles~first-order phase
transition! for two values of velocity.

FIG. 10. Plots of the temperatures of the moving interface~first-
order phase transition! in temperature gradientui and in an isother-
mal systemu0, respectively, as a function of velocity.
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«. Contrary to the static case, the thermal gradient tend
decrease the temperature of the interface at this velocity,
this effect is always very small even at large value of«. The
order parameter profiles for two values of the velocity a
represented in Fig. 9@Fig. 9~a! shows the results correspon
ing to «51025, while those corresponding to«50.1 are
presented in Fig. 9~b!#. Again we emphasize that the origi
of the x axis is not taken at the same temperature for the
curves, but at temperaturesT0(v) ~in reality, the two curves
do not intersect if we take the same origin!. The main feature
of these graphs is that the interface width decreases whe
velocity increases~part of this effect is also characteristic o
isothermal systems@see Eq.~16!#. The influence of the ther
mal gradient on the interface temperature as a function
velocity is shown in Fig. 10. We mention that the cur
corresponding to«51025 coincides with theu0 curve ~the
influence of the thermal gradient is completely negligible
this case!. The influence becomes significant~with respect to
u0) when«50.1. We distinguish two different regions:~i! at
relatively small velocities (v,0.8), the temperature of th
interface is larger thanT0, the undercooling temperature co
responding to the isothermal system, and~ii ! at large veloci-
ties (v.0.8), the influence of the thermal gradient is in o
posite direction.

B. Second-order phase transition

In directional solidification, the TDGL equation descri
ing the second-order phase transition has the form

fxx1vfx5~u01«x!f1f3, ~27!

with the far-field boundary conditions

f5H ford5~2u02«x!1/2 as x→2`,

fdisord50 as x→`. ~28!

In the absence of thermal gradient~isothermal system!,
for u0,0 ~i.e.,T<Tc), the TDGL Eq.~27! ~in which x must
be replaced byj5x2vt) describes the dynamics of forma
tion of an ordered phase when the disordered parent pha
cooled quickly at a temperature at which the ordered phas
thermodynamically stable and the disordered phase is
stable. Due to instability of the disordered phase, the nu
ation of the ordered phase takes place only through a ‘‘ph
ordering’’ kinetics process@17#. In this case, Eq.~27! has a
solution for any positive value ofv. From the continuous
family of uniformly translating front solutions the syste
selects the ‘‘pulled’’ front which moves with a velocityv*
determined by the linear behavior of the dynamical equa
~27! @16,18#. The origin lies in the fact that any perturbatio
about the unstable~disordered! phase grows out and sprea
by itself. This leads to a natural spreading velocity of line
perturbations, andv* is nothing but this velocity itself~the
linear marginal stability velocity!. Equation~27! gives ~see
the analysis presented in Sec. IV A!;

v* 52A2u0. ~29!

The numerical results are presented in Figs. 11 and 12
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«50.1. In directional solidification,v is the imposed veloc-
ity. By identifying v with v* in the corresponding isotherma
system, we get from Eq.~29! the reduced temperature in th
case:

u052v2/4. ~30!

The order parameter profiles for three different velocit
are represented in Fig. 11~with the same observation that th
origin of the x axis depends onv for each profile!. They
show that the interface width decreases when the velo
increases. The influence of the thermal gradient on the t
perature of the interface~again defined at the inflexion poin
of the f profile! is shown in Fig. 12. Again the influence o
the thermal gradient is completely negligible for«51025

~the corresponding curve coincides with theu0 one!. For «
50.1, its influence becomes significant and much larger t
in the case of the first-order phase transition.

Some comments are in order to be done here. For
isothermal system, the dynamics of front propagation in

FIG. 11. The order parameter profiles~second-order phase tran
sition! for three different values of velocity.

FIG. 12. Plots of the temperatures of the moving interfa
~second-order phase transition! in temperature gradientui and in an
isothermal systemu0, respectively, as a function of velocity.
7-8
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case of first-order phase transition@propagation of a stable
~order! state into a metastable~disorder! one# is fundamen-
tally different from that in the second-order phase transit
@propagation of a stable~order! state into an unstable~disor-
der! one#. In the first case, the propagation of the front
driven by the nonlinearities of Eq.~13! ~considered for«
50), and as a consequence its velocity is ‘‘fixed’’ by th
temperature. In the second case, the dynamics of the fro
governed by the linearization of Eq.~27! ~considered for«
50) about the unstable~disorder! state, and as a conse
quence, there is a continous set~for any positive value ofv)
of solutions ~the continuum convective instability branc
see Sec. IV A!. To determine the front velocity, the exper
mental observation~that the growth of a crystal is dominate
by the growth of the slowest facet! is used, and sov* ~the
minimum velocity of the continuum convective instabili
branch, usually called the linear marginal stability veloci!
is obtained.

In a thermal gradient, the velocity is imposed and t
system responds by fixing the interface positionxi , and so
its temperatureui5u01«xi . In our calculations we have
conventionally consideredu0 as the reduced temperature
the isothermal system in which the interface moves with
same velocityv @see Eq.~25! for the first-order phase tran
sition and, respectively, Eq.~30! for the second-order phas
transition#. We emphasize that the choice ofu0 is arbitrary;
on the other hand, the interface temperatureui in the thermal
gradient only depends on velocityv and thermal gradient«,
and is independent of the choice ofu0. The presence of the
thermal gradient does not change the main feature of
first-order phase transition concerning the propagation of
stable state into the metastable one. Thus, it may be con
ered as a perturbation to the isothermal system, its influe
on the interface temperature being small even for large
ues of« ~see Fig. 10!. On the contrary, the influence of th
thermal gradient becomes important in the case of seco
order phase transition due to the fact that now the diso
state is no longer unstable. This leads to two main diff
ences. First, for given values of velocityv and thermal gra-
dient «, the system responds by selecting a well-defin
front with an interface temperatureui significantly different
from the corresponding temperatureu0 of the isothermal sys-
tem given by the marginal linear stability principle~see Fig.
12!. Second, in the case of the second-order phase trans
for the isothermal system there is no~melting! front at tem-
peratures larger thanTc . On the contrary, in the ‘‘directiona
melting’’ the front is experimentally observed and describ
by the model~the corresponding interface temperature a
function of velocity is shown in Fig. 13!.

V. CONCLUSIONS

Using a Landau form of the free energy density, we ha
studied first- and second-order phase transitions in di
tional growth.

The two lengthsl f5(L/ f 0)1/2 and l u5DT/G are charac-
teristic of the order parameter profile and of the tempera
field, respectively, and the ratio«5 l f / l u is the ~small! pa-
rameter of the theory.
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First, we have studied the solutions corresponding t
stationary planar interface. In order to see the influence
the thermal gradient on the interface, we have studied se
rately the cases of first- and second-order phase transiti
In the former case, we have shown that the thermal grad
fixes the position of the interface~given by the inflexion
point of thef order parameter profile!, which we were able
to calculate analytically from an asymptotic analysis in t
limit «→0 and numerically at large«. In the latter case
~second-order phase transitions!, the thermal gradientfixes
the order parameter profile and its position. This is co
pletely different from what happens in an isothermal syst
in which there is no front atTc ~at this temperature,f50 in
both phases!. To define the interface width in a thermal gr
dient («Þ0), we have calculated the difference between
numerical order parameter profile and the corresponding
field profile ~obtained by neglecting elasticity!. The interface
width diverges when«→0 and tends to saturate at large«.

Second, we have analyzed the moving planar interf
solutions. Again, we have studied separately the two case
first- and second-order phase transtions. In the former c
we have solved the problem of front propagation in an i
thermal system: in particular, we have identified the line
nonlinear marginal stability~pushed-pulled! transition. We
have then performed an asymptotic analysis of the prob
in directional growth in the limit«→0: in this way, we have
found thef profile and the solvability condition that give
the position of the front in the temperature gradient. Th
we have solved numerically the problem and found that
influence of the thermal gradient becomes important wh
«.0.1. We have observed that the interface width decrea
when the velocity increases, as in isothermal systems. In
latter case of second second-order phase transitions, we
found that the front iswell selectedwhatever the velocity.
This result contrasts with what happens in free growth wh
there is a continuum of solutions at temperature lower th
Tc and no front at temperature larger thanTc .

All these results need an experimental test. We think t
the cholesteric-nematic front near a smectic phase is a
good candidate for doing this. Indeed,l f scales with the

FIG. 13. The temperatureui of the melting interface in tempera
ture gradient as a function of velocity.
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cholesteric equilibrium pitch, and so can be made as larg
we want by changing the concentration of chiral molecul
The order of the transition can be changed too. For insta
we can play with the anisotropy of the elastic Frank co
stants; although, in practice, it seems very difficult to fi
materials in which the transition is of second order; anot
method is to apply a magnetic or an electric field to a sam
of negative diamagnetic or dielectric anisotropy. In this ca
the field favors the chiral phase that unwinds in the nem
phase near the smectic phase because of the divergen
the twist and the bend elastic constants: it can be shown
the phase transition is second order in this case, provid
that the sample is thin enough.

This model omits some features of the relevant physics
particular, a hydrodynamical coupling between the order
rameter profile and the velocity field in the medium cou
exist and be responsible for some unexplained instabili
observed at large velocity by Bechhoefer at the nema
isotropic interface @19# or by Baudry at the nematic
cholesteric interface@20#. We shall address this aspect of th
problem in a future work.
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APPENDIX: THE LANDAU –DE GENNES FREE ENERGY
DENSITIES FOR THE NEMATIC AND SMECTIC- A

PHASES

We refer to the nematic-isotropic phase transition as
example of first-order phase transition. The correspond
Landau–de Gennes free energy density is given by

f 5
3

2
aN~T2T* !f22

3

4
BNf31

9

4
CNf4, ~A1!

wheref is the scalar orientational order parameter,T* is the
undercooling limit of the isotropic phase, and the coefficie
aN , BN , andCN depend only on the substance~for 8CB they
r,

hy
l,
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have the following values:aN5333104 erg/K cm3, BN
5893105 erg/cm3, andCN5563105 erg/cm3 @21#!.

We scale the variables in the following way:

f̄5
6CNf

BN
, f̄ 5

f

BN
4

242CN
3

5
f

f 0
,

u5
24aNCN~T2Tc!

BN
2

5
T2Tc

Tc2T*
. ~A2!

Eliminating overbars, the nondimensional free energy d
sity becomes

f 5f2~12f!21uf2. ~A3!

Thus, in this case the ‘‘unit’’ of the free energy density
f 05BN

4 /242CN
3 andDT5Tc2T* 5BN

2 /24aNCN . In 8CB, for
instance,f 056.23104 erg/cm3 andDT51.8 K.

On the other hand, the corresponding Landau–de Gen
free energy density for the nematic–smectic-A phase transi-
tion ~taken here as an example of a second-order phase
sition! is given by

f 5
1

2
aA~T2Tc!f

21
1

4
CAf4, ~A4!

wheref is now the smectic order parameter andTc is the
nematic–smectic-A phase transition temperature. For 8C
the coefficients have the following values:aA55
3105 erg/K cm3 and CA543106 erg/cm3 @21#. We scale
the variables in the following way:

f̄ 5
f

CA
5

f

f 0
; u5

aA~T2Tc!

CA
. ~A5!

The nondimensional form of the free energy density becom

f 5
1

2
uf21

1

4
f4. ~A6!

In this case the ‘‘unit’’ of the free energy density isf 05CA
and DT5CA /aA . In 8CB, for instance, f 054
3106 erg/cm3 andDT58 K.
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